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In [1, 2l an a l g o r i t h m  is p roposed  for  the c a l c u l a t i on  of G r e e n ' s  m a t r i c e s  which  eas i ly  can  be ex tended  
to the ca se  of c losed  she l l s  of r evo lu t i on ,  in p a r t i c u l a r ,  s p h e r i c a l ,  t o ro ida l ,  and o the r s .  The use  of these  
m a t r i c e s  e f fec t ive ly  a l lows  us to d e t e r m i n e  the s t r e s s - s t r a i n  s ta te  of such she l l s ,  g e n e r a l l y  speaking,  for 
a r b i t r a r y  loading.  On the o ther  hand,  the Calcula t ion of the s t r e s s  s ta te  of a n o n u n i f o r m l y  hea ted  she l l  u s u -  
a l ly  l eads  to the c o n s i d e r a t i o n  of the s o - c a l l e d  t e m p e r a t u r e  loads  of f a i r ly  complex  s t r u c t u r e .  Below, in 
c e r t a i n  e x a m p l e s  which  have i m p o r t a n t  p r a c t i c a l  s ign i f i cance ,  we inves t iga te  the pos s ib i l i t y  of se t t ing  up 
a l g o r i t h m s  of such  c a l c u l a t i o n  which a r e  ba se d  on the use  of G r e e n ' s  m a t r i c e s  ca l cu l a t ed  beforehand .  The 
n u m e r i c a l  r e s u l t s  thus ob ta ined  al low us  to draw c e r t a i n  c o n c l u s i o n s .  

Let  the p a r a m e t r i c  f o r m  of the to ro ida l  su r f a c e  in ques t ion  be given by the equa t ions  

x = (B + acos(p) cosO, y =  (R + acosq~)sin~, z =  asinqD (1) 

The t h e r m o e l a s t i c  e q u i l i b r i u m  for  which  th i s  s u r f a c e  is the middle  su r f a c e  (as a shel l  of revolu t ion)  
can  be d e t e r m i n e d  ([3], p. 98) by m e a n s  of a s y s t e m  of d i f f e ren t i a l  equa t ions  of the f o r m  

f .  

h 2 l a , O 1  

where  U(~, $) and  | $) a r e  the v e c t o r s  of the d i s p l a c e m e n t  of the middle  su r f ace  and the t e m p e r a t u r e  
load r e s p e c t i v e l y ,  and the  o p e r a t o r  A ~ has the f o r m  

A~ = (Aii~ J=l 

i 02 l - - v  02 sin(~ 0 (i--v) cos(p a+lTcosq~ 
Al1~ = "~  0-~ -}- --~'~- 0-6~ --  - ~ -  ~ --{- aB aB 2 

i + v  02 (3 -- "~) sin tp 0 
Ar~~ -- 2aB O~ 3~" + 2B 2 O~ 

R + (l +v)  acostp 0 R sin tp 
Axa~ = a~B O(p --  aB z 

t + v  0 ~" (3--v) sinq~ 0 
A21~ 2aB O~ O0 --  2B ~ O0 

+ B) cos (p -- sin ~ q) �9 t 0 ~ t - - v  0 ~ (i -- v) sin q~ 0 (I_~)(R a 
A=2 ----'-~'~-~ + ~a~ " f f ~ -  2aB O~p + 2aB z 

R +(1 +~) acostp 0 
A2a ~ = aB 2 O~ 

A a l O ~ R + ( l + v )  aeos~ 0 [~R + (t + v) a cos q)] sin(p 
aeB O~ - -  aB 2 

vR + ( 1 +  ~) acoscp 0 
A~~ = aB" 

A~ao__B[B-}-(4 + 2~)acos(p]-}-a~cos~tp h 2 /B2 +a~cos~.q) 
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Calcula t ion  r e s u l t s  show that ,  fo r  the conc re t e  ca se s  to be c o n s i d e r e d  in the following, cons ide ra t ion  
of the o p e r a t o r  A* a l t e r s  the t e m p e r a t u r e  loads by no m o r e  than 2%. T h e r e f o r e  (2) can be subs t i tu ted  a p -  
p rox ima te ly  by the following. 

The components  of the v e c t o r  | =(O1, | @3) of the t e m p e r a t u r e  load a r e  given by the e x p r e s s i o n s  

• i 0 (  h ) 

• i 0 ( hcos~ ) 

uEh { R + 2acoscp ~.~ ) 
O, = 2 ~ \' 2aB "tl - -  Ats 

Here  v, E, and h a r e  P o i s s o n ' s  ra t io ,  modulus  of  e l as t i c i ty ,  and the th ickness  of the shel l  r e s p e c -  
t ively;  a is the rad ius  of a mer id iona l  sec t ion  of the shell ;  R is the d i s tance  be tween the cen t e r  of this  s e c -  
t ion and the axis  of revolu t ion;  ~o and ~ a r e  the cu rv f l i nea r  coo rd ina t e s  of the middle  su r face ;  x is the c o -  
eff ic ient  of l i nea r  expans ion  of the ma te r i a l ;  t 1 and t 2 a r e  the c h a r a c t e r i s t i c s  of  the t e m p e r a t u r e  f ield T = 
T@, ~) given by the in tegra l s  a long the n o r m a l  to the middle  s u r f a c e  of the shel l  

t l  = ~ ~, Td"(, t2 = ~ TTd~ 
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T A B L E  1 

K uk 0 uk2 v k2 Wko wk2 

O.O00OO 
--0.02898 
--0.0i887 
--0.00331 

0.00309 
0.00085 

--0.00084 
--0.0001i 

0.00000 
--0.04245 
--0.10094 
--'0.06309 
--0.00435 
--0.01354 

0.00252 
0.00238 

--0.02560 
--0.06262 

0.06936 
--0.02925 

0.00493 
0.00234 

--0.00i4t 
0.000t7 

0.00351 
0.02953 
0.03799 
0.00969 

--0.01237 
--0.00400 

0.005i9 
0.00060 

0.00274 
0.05439 
0.19534 

--0.t8607 
0.01756 
0.06725 

--0.01602 
--0.00161 

B = R + a  c o s  ~; A denotes  the l i n e a r  d i f f erent ia l  o p e r a t o r s  

i O ~ i 02 s in  (p 0 

If Green ' s  ma t r ix  G(~0, J ;  e ,  f~) of the s y s t e m  (3) for  the given shell is known, then the d i sp lacement  
vec to r  of its middle sur face  is given by the integral  

~r ((p, ~) = S j  G t~, e; ~, ~) 0 (a, 6) d~.~Q (4) 

The calculat ion of the the rmoe la s t i c  s ta te  of the shell  is normal ly  c a r r i e d  out in s tages :  

1) de terminat ion of the t e m p e r a t u r e  field of the shell;  

2) computation of the t e m p e r a t u r e  loads; 

3) calculat ion of the s t r e s s - s t r a i n  s ta te  of the shell  under the action of these  loads.  

The complex nature  of the t e m p e r a t u r e  loads should be r ega rded  as  the i r  specia l  fea ture .  The point 
is that the complicat ions a r i s ing  when the t e m p e r a t u r e  f ields a r e  being de te rmined  a re  added to the c o m -  
plexi t ies  of the initial data, and then the complicat ions  of geomet r i ca l  origin,  appear ing  when the t e m p e r -  
a ture  loads a r e  being computed,  a r e  added. It is obvious that to obtain t rus twor thy  r e su l t s  we mus t  at 
l ea s t  take into account the basic  ones of the fac to r s  just  mentioned. The possibi l i ty  of achieving this by 
means of Green ' s  m a t r i c e s ,  which have been calculated beforehand with sufficient accuracy ,  is i l lus t ra ted  
by examples .  

In the technology a construct ion is used which cons is t s  of th ree  c losed thin toroidal  shel ls  connected 
with one another  by means  of cyl indr ical  b ranch  pipes or  ba r s ,  for  example ,  according  to the setup of Fig. 
l a .  The construct ion is in a medium with the t e m p e r a t u r e  T1, while inside the shell  I a t e m p e r a t u r e  T O 
is maintained.  Thus,  the t he rma l  s ta te  of the sheU II can approx imate ly  be cha r ac t e r i z ed  by local  heating 
(cooling) in the neighborhoods of points (corresponding to the disposit ion of the bars)  which a r e  located suf-  
f iciently fa r  f r o m  one another .  The re fo re ,  the p rob lem concerned w i th the  effect  of local  heating on the 
s t r e s s - s t r a i n  s ta te  of a toroidal  shell  is of in te res t .  

We consider  the case  when the t e m p e r a t u r e  of the shell  is given by the express ion  

T ((p, O) ----~ T,  C0$ le 1/s(p COS s 2~ (T, = const) 

(this co r re sponds  to local  heating in the neighborhoods of the four equaIly spaced  points of the outer  equator  
of the shell) .  

The approximat ion  of the components  of the vec to r  | of the t e m p e r a t u r e  load by the polynomials  

7 7 

k,~O ~,m~o 
, (5) 

k,m~0 

guarantees,  in the given case  a degree  of accu racy  exceeding 97%. Such smaUness  of e r r o r  of the s y s t e m  
(3) enables us to r e g a r d  as sufficient the accuracy  of Green ' s  ma t r ix  used which complete ly  takes  into a c -  
count the t e r m s  figmcing in the expansions (5) (the computat ion e r r o r  is insignificant).  
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The charac te r i s t i c s  of the s t r e s s - s t r a i n  state of the shell with the pa ramete r s  R =400, a=100,  h = l ,  
v =0.25, calculated according to the express ion (4), are  shown in Fig. 2a, b. On the partial views c and d 
we have shown the resul ts  of calculating the same toroidal  shell subjected to local heating in the neighbor-  
hoods of the four equally spaced points of the inner equator.  In the upper par ts  of Fig. 2 we have shown 
the deflection of the shell;  the points of heating are  indicated by a r rows :  The tangential deformation of the 
coordinate grid is r epresen ted  in the lower left co rne r s  of the part ial  views b and d. Here the normal  
s t r e s ses  a~o and g~, as well as the bending moment M~?, are  depicted by level l ines.  

The local izat ion of perturbat ions within the l imits  of the Gaussian curvature  of the middle surface 
having the same sign can be noted. This c i rcumstance  allows us to take into account local effects applied 
simultaneously at points of the outer and inner equators,  by combining the cases  considered.  

The decrease  of perturbat ions in the direct ion of the paral le ls ,  as we move away f rom the point of 
application of the concentrated effect in a region of positive Gaussian curvature ,  is expressed  considerably 
more  strongly than in a region of negative curvature .  This means that the f i rs t  of these regions of a to- 
roidal shell has a g rea te r  st iffness with r e spec t  to the effects considered than the second region. 

The case where shells a re  joined according to the scheme of Fig. l a  (the section $=0;  the compo- 
nents | $) of the tempera ture  load a re  shown in Fig. lb,  while the components @1(~0, $) and | $) have 
a fo rm corresponding to this) can also easily be calculated by this method. Certain resul ts  of such a ca l -  
culation for a toroidal  shell with the previous values of the pa ramete r s  are  shown in Fig. le .  

The fact that the neighborhoods of the "cooling" bars  are  the ones with a maximum s t r e s s ,  and that 
the s t r e s se s  g3 well exceed a~, is of interest .  

We next consider  the problem of using an analogous method for  taking into account telhperature fields 
which vary  more  smoothly.  Let,  for example,  in a medium of tempera ture  T = T , x  2 (T ,=cons t )  there be 
a toroidal  shell of radius R=200 and with the same values of the remaining pa ramete r s  as above. The s ta-  
t ionary tempera ture  field of a shell obviously is given by the express ion 

T (~, #) = T. (R q- a cos ~)2 cos~ 

The displacement  components of the middle surface in this case have the fo rm 
co 

u (~, ~) = ~ (uk0 -b uk~ C0S 2~) s in  kq~ 
k~0 

v (r ~) = ~, v~2 sin 2~ cos k~ 

cr 

w (~, ~) ~-- ~ (W~o -b i%2 cos 2~) cos k~ 
k=0 

The values of the coefficients Ukm , Vkm , Wkm are  presented in Table 1. Without complicating the 
discussion,  we note only that a rapid decrease  of the moduli of the Four ie r  coefficients of displacements 
ensures  that acceptable accuracy  is achieved while calculating the charac te r i s t i c s  of the s t r e ss  state of 
the shell. 

It is easy to see that in principle a possibil i ty exists for extending the calculation Schemes presented 
here to any shell for which Green ' s  ma t r i ces  can be calculated beforehand according to [1, 2]. 
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